

ASC Builder: A GUI tool for creating Algorand Smart Contracts

ASC Builder is a drag-and-drop GUI tool that makes it possible for developers to create Pyteal source code that can in turn be compiled to TEAL smart contracts by the use of UI widgets, actions and configurations that specify their behaviours.

[image: _images/home.png]

The aim of the project is to make the development of smart contracts easier and provide an open and shared workflow that features exports and imports of projects via JSON schemas.

It also helps in preventing unforseen errors when constructing nodes, methods and actions.

User Guide

	Methods

	Variables

	Nodes

	Control Flow

	Global States

	Overriding Default Methods

	Compiling

Methods

A method (or route) can be added to the GUI by clicking on the ‘Method’ menu item at the top-right part of the screen.

[image: _images/method.png]

You then have to provide the name of the method, which MUST be named with the variable naming standards as used in Python.

For instance; if a method for sending tokens to the caller of the smart contracts is to be created, you can use a name such as

redeemTokens or redeem_tokens or RedeemTokens

Method names must not begin with numbers!

Furthermore, a Method cannot be added to another Method.

Variables

There are many variables that can be added to the GUI that help to hold different values that range from Transaction properties to Integers, Byte Slices and many more.

Variables that are created are added to the Variables side panel at the right-hand side of the screen. To create a variable, you specify the variable name and construct its value from the UI.

[image: Variables panel]
There are a total of 18 variables that can be created thus;

Address

An Address variable is meant to hold a valid Algorand Address. There are many options that can be chosen as values for the Address variable and are selected from a dropdown.

	Name

	Description

	Address

	This is used to specify a 58-character Algorand address that you intend to be stored in the variable. It’s a string representation of a valid address.

	Creator Address

	This represents the Address of the creator of the smart contract. Equivalent to Global.creator_address() in Pyteal.

	Current Application Address

	This represents the Escrow account attributed to the smart contract. Equivalent to Global.current_application_address().

	Accounts

	This is used to provide a positive integral index in an array of accounts specified in the Application Call. Equivalent to Txn.accounts[] in Pyteal.

	Sender

	This represents the caller (sender) of the transaction. Equivalent to Txn.sender().

	Receiver

	This represents the receiver of a Payment transaction. Equivalent to Txn.receiver().

	Asset Receiver

	This represents the receiver of an AssetTransfer transaction. Equivalent to Txn.asset_receiver().

Asset

An Asset variable is meant to hold an asset index that can be used for an asset transfer or any other ASA operation. There are two means of specifying the value of this variable:

	Name

	Description

	Asset Index

	This is used to specify the ASA ID of the asset for any Asset operation.

	Assets

	This is used to specify an positive integral index in the assets provided in the Application Call.

Byte String

A Byte String variable is meant to provide a string variable in the application.
It result to Bytes() in Pyteal.

Integer

An Integer variable is meant to provide a positibe numeric variable in the application.
It results to Int() in Pyteal.

Asset Holding

An Asset Holding variable is meant to provide the balance of an asset ($ALGO or ASA) of a specified Algorand address.
You also specify the account in question as a variable (most specifically an Address variable) whose balance should be gotten for the given asset.

Possible choices for the target asset are:

	Name

	Description

	$ALGO

	This is used to get the $ALGO balance of an asset in MicroAlgos.

	Asset Index

	This is used to specify the Integral value of the ASA in which to get the account’s balance for.

	Variable Name

	This is used to specify a variable name that contains the ASA in question.

Min Balance

A Min Balance variable is meant to get the minimum possible balance of an Algorand account.
The required parameter to provide is a variable that holds the Account whose minimum balance should be retrieved.
Equivalent to MinBalance() in Pyteal.

Asset Decimals

An Asset Decimals variable is meant to get the decimals of an asset as an integral value such as 0, 1, 2 etc.
The parameter provided is either an Asset Index or a variable that holds the ASA ID of the asset whose decimals you want to get.
Equivalent to AssetParams.decimals() in Pyteal.

Argument

An Argument variable is used to get a 1-indexed value in the array of arguments provided in the Application Call.
Equivalent to Txn.application_args[] in Pyteal.

Application

An Application variable is used to represent an application ID.
Possible values that can be provided are a 1-indexed index in the list of applications (Txn.applications[]) provided in the Application Call or an integral value for the application ID (Note that it must still be in the list of applications).

Transaction Field

A Transaction Field variable is used to represent a transaction field such as sender, fee, receiver etc.

Grouped Transaction Field

A Grouped Transaction Field variable is used to represent a field in a grouped transaction.
The group index and the field are values that should be provided for this variable.

Miscellaneous

A Miscellaneous variable is used to create variables that perform special transforms to variables such as arithmetic operations, ByteSlice manipulation and type casting.

Local State

A Local State variable is used to hold a local state key from a specified Algorand account. Equivalent to App.localGet()

Global State

A Global State variable is used to hold a global state value in the application. Equivalent to App.globalGet()

External Local State

An External Local State variable is used to hold a local state value for an Algorand account in an external application whose ID is provided. Equivalent to App.localGetEx()

External Global State

An External Global State variable is used to hold a global state value in an external application whose ID is provided. Equivalent to App.globalGetEx()

Global Field

A Global Field variable is used to hold a Global value such as the latest timestamp, creator address and many others.

Transaction Type

A Transaction Type variable is used to hold a value that represents a type for a transaction, which can be used for comparison to the type_enum() field of a transaction.

Nodes

A Node is a component that represents a flow in the GUI program. It can be used to define the structure and behaviour of a method in your smart contract.

Each Node has a special color attributed to it to enable easy differentiation and streamlining.

[image: _images/nodes.png]

There are quite number of nodes that can be used in ASC Builder, which are as follows:

Decision

A Decision node is a wrapper for the If statement and helps to construct logical decisions. A typical decision Node consists of a Met node and a Routine node.

Met

A Met node is a used to specify a condition or set of conditions (And Conditional, Or Conditional) and an action or group of actions to be performed when met.

Routine

A Routine node is used to specify an action or set of actions to be performed in your smart contract.

Or Conditional

An Or Conditional node is used to specify a set of conditions in such a way that at least one of any of the conditions must be met for it to be valid.

And Conditional

An And Conditional node is used to specify a set of conditions in such a way that all of the conditions must be met for it to be valid.

Action

An Action node is used to perform an operation such as an asset transfer, approval, rejection, etc. in your smart contract.
Some examples of actions are:

	Send $ALGO

	Send an ASA

	Opt-in ASA

	Write Global State

	Write Local State

	Remove Global State

	Remove Local State

	Approve Transaction

	Reject Transaction

Condition

A condition node is a single comparative expression that is used in a Met node, And Conditional or Or Conditional node.

Control Flow

In every application, we have a way in which logic can be designed. In this sense, ASC Builder can be used to create a logical expression such as an If statement which uses comparative operators and performs actions when due according to conditions met or not met.

The structure is thus:

Decision Node
├── Met Node
│ ├── Condition Node
│ ├── Routine Node
│ │ ├── Action Node
├── Routine Node
│ ├── Action Node

A typical illustration of a decision statement would be to create two variables such as txn_sender and creator_address thus:

[image: _images/nodes-variables.png]

We may want to check if the transaction sender is the creator of the smart contract and approve if that is the case or reject if that is not the case.

To do this, we follow these steps:

	Create a Decision node

	Create a Met node and add it to the Decision node.

	Create a Routine node and add it to the Decision node.

	Add a Condition node to the Met node, which has the first operand as txn_sender, second operand as creator_address and the operator as Is Equal to.

	Add a Routine to the Met node.

	Add an Action to the just added Routine with Approve Transaction.

	Add an Action node to the Routine directly nested in the Decision node with Reject Transaction.

The resulting GUI would appear thus:

[image: _images/nodes-example.png]

The structure of a decision MUST follow the following pattern.

You can watch the video in this Tweet [https://twitter.com/Algoknox/status/1540468431228751872] to see how this is done.

Global States

Static Global States can be specified (to be created upon application creation).
A state is created with a Key and the associated value.

There are three forms of Global States that can be created with respect to their data types:

	Data Type

	Description

	Byte String

	Used to provide a value of ByteSlice that
should be stored in the state.

	Integer

	Used to provide integral value that
should be stored in the state.

	Address

	Used to provide a valid Algorand address that
should be stored in the state.

Upon creation of the Application, the created Global States will be created for use in the rest of the application’s lifetime.

Overriding Default Methods

At default, there are two methods that are defined when a user opts in and when the application is created.

These two methods are OptIn() and OnCreate() respectively.

The default action in these routes is Approve(), when there are no states or definitions to override them.

When a Global State is added (via Global state component), it is due to be created upon application creation.

Once that is set, the application creates them upon deployment.

Nevertheless, the behaviours for the scenarios of opt in and creation can be altered by creating methods, OptIn() and OnCreate() and adding nodes that should perform the intended functions.

Likewise, the behaviour of the clear Program can be altered by creating a clearProgram() method and adding nodes to it.

Once these methods are created, the default Approve() return value would be overriden in the Pyteal source code result returned.

Compiling

The GUI workflow can be converted to a JSON schema or Pyteal source code.

When the “Export JSON schema” button is clicked, a JSON file is downloaded, called asc-builder.json, which can be imported to create another project with the same data.

A typical Pyteal source code result would appear thus:

[image: _images/compiled.png]

The code can be copied to clipboard and then executed to generate TEAL code.

Index

 _static/plus.png

nav.xhtml

 Table of Contents

 		
 ASC Builder: A GUI tool for creating Algorand Smart Contracts

 		
 Methods

 		
 Variables

 		
 Address

 		
 Asset

 		
 Byte String

 		
 Integer

 		
 Asset Holding

 		
 Min Balance

 		
 Asset Decimals

 		
 Argument

 		
 Application

 		
 Transaction Field

 		
 Grouped Transaction Field

 		
 Miscellaneous

 		
 Local State

 		
 Global State

 		
 External Local State

 		
 External Global State

 		
 Global Field

 		
 Transaction Type

 		
 Nodes

 		
 Decision

 		
 Met

 		
 Routine

 		
 Or Conditional

 		
 And Conditional

 		
 Action

 		
 Condition

 		
 Control Flow

 		
 Global States

 		
 Overriding Default Methods

 		
 Compiling

_images/nodes-example.png
method @ redeemTokens

node %.": Decision

node " Met

node %.": Condition

node .": Routine

node %" Action

node .": Routine

node %" Action

_images/nodes-variables.png
Properties Variables Globals

Add variable ¥

> txn_sender X

oo

Method @&: redeemTokens()
Computed value: txn_sender =
Txn.sender()

<i> creator_address X

oo

_images/home.png
Node v [Variable ~ @@ Method] Global State ¥ [»> Compile ~ : ¢

Properties Variables Globals

method @: buyTokens Add variable ~

node %.": Decision

L

@i» txn_sender x

node " Met
Method @: buyTokens()
Computed value: txn_sender =

w, i
node ".": Condition Txn.sender()

node %.": Routine
@i» creator_address x

node %" Action

node %" Action

node %.": Routine

node %" Action

_images/method.png
Add a Method (Route)

Method name

redeemTokens

+ Add Method

_images/nodes.png
Nodes

Decision Met Routine Or
Conditional

Action Condition And
Conditional

_images/variables.png
Properties Variables Globals

Add variable ¥

<i> txn_sender X

oo

Method @&: redeemTokens()
Computed value: txn_sender =
Txn.sender()

_static/file.png

_static/minus.png

_images/compiled.png
Pyteal (TEAL 5)

from pyteal import *

def approval_program():

txn_sender = Txn.sender()

creator_address = Global.creator_address()

redeemTokens = Seq(

If (
txn_sender == creator_address
) .Then(
Seq(
Approve()
)
).Else(
Seq(
Reject()
)
)s
)
OptIn = Seq(
Approve()
)

OnCreate = Seq(

